NREL Job Task Analysis: Energy Auditor

Chuck Kurnik
National Renewable Energy Laboratory

Cynthia Woodley
Professional Testing Inc.

Technical Report
NREL/TP-7A20-51672
May 2011

Contract No. DE-AC36-08GO28308
NREL Job Task Analysis:
Energy Auditor

Chuck Kurnik
National Renewable Energy Laboratory

Cynthia Woodley
Professional Testing Inc.

Prepared under Task No. ARIG.2250

Technical Report
NREL/TP-7A20-51672
May 2011

Contract No. DE-AC36-08GO28308
NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.
NREL Job Task Analysis–Energy Auditor

Introduction

A Job Task Analysis is a foundation for any valid credentialing program and helps identify the core knowledge areas, critical work functions, and/or skills typically found across a representative sampling of current practitioners or job incumbent workers. Empirical results from a job analysis provide examinees and the public with a valid, reliable, fair, and realistic assessment that reflects the skills, knowledge, and abilities required to competently perform a job.

In July of 2010, a group of 12 Subject Matter Experts (SMEs) met to perform the Job Task Analysis and to create an examination blueprint that would serve as the basis for the worker certification. A trained psychometrician facilitated the meeting and helped guide the development of these analyses. In the fall of 2010, an online survey was administered to validate the results of the JTA and to finalize the examination blueprint. More than 400 Energy Auditors from across the United States responded to the survey.

This report contains the Energy Auditor Specifications and a content outline. In addition, the attached Exam Blueprint builds on these specifications by providing the optimum percentage of exam questions that should be asked about each task.

Scope

An Energy Auditor is a residential energy efficiency professional who evaluates the energy efficiency, health, and safety of a home, and conducts field measurements to identify areas for savings. The Energy Auditor produces this information as a report and makes recommendations to the customer. A committee of SMEs considered to be experts in the field created the Energy Auditor Job Task Analysis.

This document is intended to include all of the tasks an Energy Auditor may perform, as well as the knowledge, skills, and abilities required to do these tasks.

Please note that certification is not a license to practice. All certificants must comply with applicable federal, state, and local laws and regulations governing the profession.

Content

- A Job Task Analysis for an Energy Auditor
- An Exam Blueprint for an Energy Auditor
Energy Auditor Specifications and Content Outline

Job Description: An Energy Auditor is a building scientist who evaluates the energy efficiency and health & safety of a building and identifies areas for savings by gathering empirical data, conducting tests and using energy modeling software, in order to reduce the energy consumption, improve the safety, and increase the lifespan of a building; while improving the quality of life and comfort for building occupants.

Domains/Tasks

Domain 1: Demonstrating Professional Energy Auditor Conduct

Task 1: Establish client relations for an energy audit
Task 2: Represent the program/agency/organization
Task 3: Maintain professionalism

Domain II: Collecting information about the Building for an Energy Audit

Task 1: Document energy consumption
Task 2: Document the building history
Task 3: Conduct a physical/visual inspection
Task 4: Collect appliance information
Task 5: Collect electrical base load data
Task 6: Collect building measurements
Task 7: Collect health and safety data
Task 8: Collect mechanical ventilation data
Task 9: Identify building insulation (attic, walls and foundations)
Task 10: Collect attic data
Task 11: Collect wall data
Task 12: Collect window data
Task 13: Collect door data
Task 14: Collect foundation data
Task 15: Collect roof data

Domain III: Testing the Building For an Energy Audit

Task 1: Preparing for the test(s)
Task 2: Evaluate the appliances
Task 3: Conduct indoor air quality tests
Task 4: Perform combustion safety and efficiency tests
Task 5: Perform blower door tests
Task 6: Perform HVAC distribution tests

Domain IV: Evaluating Collected Energy Audit Data

Task 1: Evaluate the health and safety of the building
Task 2: Evaluate the durability/structural integrity of the building
Task 3: Evaluate the HVAC system
Task 4: Evaluate the mechanical ventilation
Task 5: Evaluate energy use base loads
Task 6: Evaluate the foundation
Task 7: Evaluate the walls
Task 8: Evaluate the attic
Task 9: Evaluate the doors
Task 10: Evaluate the windows
<table>
<thead>
<tr>
<th>Task 11:</th>
<th>Enter the data into energy modeling software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 12:</td>
<td>Determine the work scope</td>
</tr>
</tbody>
</table>
Energy Auditor Content Outline

DOMAIN 1: Demonstrating Professional Energy Auditor Conduct

Task 1: Establish client relations for an energy audit

Ability to:
- Conduct client introductions
- Conduct client interviews
- Complete client questionnaires
- Explain the purposes of the visit
- Set the client expectations and responsibilities (pre and post audit)
- Establish the client plan of action
- Engage the client in the actual testing
- Sell the client services and/or packages
- Obtain client signatures on forms (lead forms, etc.)
- Serve as a liaison between the client and the contractors
- Ability to work independently

Knowledge of:
- Building science
- Codes of conduct
- Forms
- Funding sources/financing
- Health and safety issues
- Interviewing techniques
- The program

Skill in:
- Communication
- Listening
- Presenting information
- Time management

Task 2: Represent the program/agency/organization

Ability to:
- Interface with crews and subcontractors
- Complete program/agency/organization reports

Knowledge of:
- Construction processes and techniques
- Program reports

Skill in:
- Communication

Task 3: Maintain professionalism

Ability to:
- Complete continuing education
- Maintain certifications
- Acquire new certifications
Knowledge of:
• Appropriate dress for the situation
• Certification requirements for energy auditors
• Continuing education requirements for energy auditors

DOMAIN 2: Collecting Information About the Building for an Energy Audit

Task 1: Document Energy Consumption

Ability to:
• Obtain 12 months of client utility bills
• Obtain annual fuel delivery information (oil, propane, etc.)

Knowledge of:
• How to access utility information
• Utility bill components

Skill in:
• Calculating
• Basic Math

Task 2: Document the building history

Ability to:
• Determine the age of the original structure
• Determine the age of any additions or improvements
• Determine if the building has any historical significance

Knowledge of:
• How to access building permit history
• How to access tax files

Task 3: Conduct a physical/visual inspection

Ability to:
• Walk around the exterior of the building
• Look for holes, chimneys, gutters, vent pipes, soffits, fascia, peeling paint, foundation integrity, areas of infiltration and exfiltration, exhaust fan penetrations, accesses, crawlspaces, roof vents, land grading, shading, orientation of the building, anomalies.
• Walk around the interior of the building
• Identify hidden rooms or spaces
• Look for pest/vermin infestations, evidence of leaking or water damage, holes, chimneys, vent pipes, peeling paint, foundation integrity, areas of infiltration and exfiltration, exhaust fan penetrations, accesses, crawlspaces, roof vents, structural damage
• Identify hazardous materials in the building
• Detect unusual odors
• Identify health and safety issues (clutter, bleach stored next to a furnace, etc.)
• Perform visual inspection of vented combustion appliance venting configuration
• Detect unusual odors
• Visually inspect adjacent and/or connected buildings for issues that impact or could be impacted by the audited building
Knowledge of:
- General construction
- Codes and standards adopted by the local jurisdiction
- Combustion appliance venting procedures
- Hazardous materials
- Issues that pose a health and/or safety risk (clutter, bleach stored next to a furnace, animal feces, etc.)
- NFPA 211
- Situations that pose a health and/or safety risk
- Effects of moisture
- Sources of moisture
- What to look for when conducting a physical/visual inspection
- Photograph and document conditions

Skill in:
- Attention to detail

Task 4: Collect appliance information

Ability to:
- Collect refrigerator/freezer tag data and documentation
- Collect heating/cooling appliance tag data and documentation
- Identify heating/cooling appliance fuel type
- Collect domestic water heater tag data and documentation
- Collect washer/drying tag data and documentation
- Collect mechanical ventilation tag data and documentation
- Collect dishwasher tag data and documentation
- Collect shower head flow rates
- Collect dehumidifier tag data and documentation
- Collect stove/oven appliance tag data and documentation
- Identify stoves/ovens appliance fuel type
- Collect unvented space heater tag data and documentation
- Identify other components related to the HVAC appliances (expansion tanks, fill valves, remote compressors, etc.)
- Identify other components related to the domestic water heater appliance (storage tanks, mixing valves, etc.)
- Identify safety features related to the HVAC and domestic water heater appliances

Knowledge of:
- Appliances
- Codes and standards adopted by the local jurisdiction
- Domestic water heater components and operation
- Heating/cooling system operations
- How to read a meter
- How to read and interpret appliance tags
- Mechanical ventilation equipment
- Safety issues associated with domestic water heaters
- Show head operations and flow rates
- Various appliance fuel types
Skill in:
- Penmanship
- Attention to detail

Task 5: Collect electrical base load data

Ability to:
- Conduct a lighting audit
- Count the number of people in the house
- Determine if dishwasher is present
- Determine if the domestic water is fuel fired or electric
- Collect client lifestyle information (TV usage, Xboxes, etc.)
- Meter the refrigerator
- Look for additional usage sources (hot tubs, pool pumps, pool heaters, fish ponds, fountains, etc.)
- Collect electrical system information (size, brand, etc.)

Knowledge of:
- Fuel fired versus electric domestic water heaters
- How lifestyle affects energy consumption
- How to analyze a utility bill
- How to diagnose high electric/gas usage
- Know to read an electric meter
- Refrigerator gasket seal conditions

Skill in:
- Basic math

Task 6: Collect building measurements

Ability to:
- Measure walls
- Measure roofs
- Measure windows
- Measure doors
- Measure perimeter
- Measure radiators
- Measure foundation height
- Measure attic venting
- Measure attic spaces
- Measure area and volume of the building envelope

Knowledge of:
- How to calculate the area and volume of the building envelope
- How to identify the pressure boundary
- How to identify the thermal boundary
- How to measure building components (doors, etc.)
- Various building components

Skill in:
- Measuring
- Attention to detail
- Basic math
Task 7: Collect health and safety data

Ability to:
- Locate existing smoke/CO detectors
- Determine age of smoke/CO detectors
- Determine if smoke detectors/CO are hardwired or battery
- Verify clothes dryer is properly vented to exterior
- Verify all exhaust fans are properly vented to exterior
- Identify any existence of hazardous materials/conditions
- Identify knob and tube wiring
- Identify moisture issues (standing water, condensation, plumbing leaks, mold, etc).
- Identify electrical hazards (frayed wiring, open junction boxes, unkempt wires, overloaded circuits, etc.)
- Identify suspect asbestos
- Identify lead based paint hazards
- Identify propane fueled appliances
- Identify unvented combustion appliances
- Identify properly operating back draft damper

Knowledge of:
- Proper locations for smoke/CO detectors
- Venting requirements for appliances
- Conditions that signify moisture
- Domestic water heater safety
- Electrical hazards
- Hazardous materials
- Heating system safety
- How to determine if knob and tube wiring is active
- Issues and hazards associated with asbestos
- Issues and hazards associated with lead based paint
- Manufactured home water heater regulations
- Rules and regulations pertaining to lead and asbestos
- Smoke/CO detector operations

Task 8: Collect mechanical ventilation data

Ability to:
- Review manufacturer’s specifications for exhaust fans
- Determine the volume of the affected space
- Determine the type of control
- Identify the size of the registers
- Determine condition of the ventilation ductwork / piping (pitch, insulation, size, material, elbows, length to run, etc.)
- Calculate volume

Knowledge of:
- The different controls and motors
- Types of ventilation materials
- Ventilation ductwork
- Ventilation standards and local codes
Task 9: Identify building insulation (attic, walls and foundation)

Ability to:
• Identify insulation type
• Identify insulation amount (thickness, etc.)
• Identify insulation condition
• Identify presence and placement of vapor retarder
• Identify location of insulation (exposure, aligned with pressure plane and thermal boundary, etc.)
• Identify areas of insulation opportunities
• Probe
• Work in confined spaces

Knowledge of:
• Building science
• Insulation effectiveness
• Insulation R-Values
• Insulation placement
• OSHA safety requirements

Task 10: Collect attic data

Ability to:
• Identify attic components
• Measure attic/roof cavities
• Measure attic areas
• Measure attic framing
• Determine existing ventilation (soffit, can, ridge, type and size, power ventilators, etc.)
• Identify sources/signs of water damage
• Identify infiltration points
• Identify point(s) of access
• Identify electrical hazards
• Identify pest/vermin infestations
• Determine attic uses
• Note the existence of a radiant barriers
• Identify existence of baffles
• Use ladders
• Work in confined spaces

Knowledge of:
• Attic components
• Electrical hazards
• General construction terms
• How to calculate the area and volume of building spaces
• Infiltration points
• Safety hazards in an attic (nails, rafters, heat exposure, etc.)
• Signs of water damage
• Signs of pest/vermin infestations
- Thermography
- Types of ladders based on the situation
- Ventilation requirements

Task 11: Collect wall data

Ability to:
- Identify wall type (interior, exterior, components)
- Identify framing method
- Measure wall areas
- Identify wall orientation
- Identify cavity depth
- Identify source and signs of any water damage
- Identify infiltration points
- Identify signs of pest/vermin infestation
- Identify orientation using online mapping tools
- Identify upper stories
- Use a compass

Knowledge of:
- General construction
- Building science
- Compass orientations
- Infiltration points
- Typical wall framing and components
- Issues unique to framing methods (upper story band joists, angle bracing in post and beam framing, etc.)

Skills in:
- Basic math
- Logical thinking

Task 12: Collect window data

Ability to:
- Identify window type (jalousie, awning, single-hung, double hung, etc.)
- Identify window frame type
- Identify window glazing type
- Identify exterior shading
- Identify window operation/leakiness
- Measure window area
- Count number of windows
- Identify window orientation
- Identify general window conditions

Knowledge of:
- Code requirements pertaining to window glazing (walkways, etc.)
- OSHA safety requirements
- SHPO requirements
- Window construction, components and nomenclature

Task 13: Collect door data

Ability to:
- Identify door type and swing
- Measure door area
- Count number of doors
- Identify door conditions
- Identify condition of door sweep and weather stripping
- Identify door hardware condition

Knowledge of:
- Door components, hardware and nomenclature
- Door construction
- Door operation and adjustments

Skill in:
- Basic math

Task 14: Collect foundation data

Ability to:
- Identify foundation types (crawlspace, basement, or slab)
- Identify foundation materials
- Measure floor areas
- Identify infiltration points
- Measure exposed walls
- Measure thickness of foundations
- Identify sources and signs of moisture
- Identify points of access
- Identify electrical hazards
- Identify signs of pest/vermin infestations
- Determine structural integrity
- Identify special equipment (sump pumps, etc.)
- Measure the crawlspace ventilation
- Record the location of any plumbing pipes
- Work in confined spaces
- Measure

Knowledge of:
- General construction
- Basic Electricity
- Basic Plumbing
- Building science
- Codes and standards adopted by the local jurisdiction
- Crawlspace ventilation requirements
- Foundation construction materials and methods
- OSHA safety requirements
- Potential sources of moisture
- Signs of moisture
- Signs of pests/vermin
- Signs of structural hazards on foundations
- Structures typically found in foundations
- Types of foundations
Skill in:

- Observation

Task 15: Collect roof data

Ability to:

- Identify roof conditions
- Identify roof color
- Identify roofing materials (90 lb paper, rubber, etc.)
- Identify condition of parapet walls
- Identify roof penetrations
- Identify roof debris (garbage, old air conditioners, etc.)
- Identify roof ventilation (passive vents)
- Identify roof drainage
- Identify roof pitch
- Measure roof area
- Note flashing condition
- Identify roof access
- Identify roof exposure and orientation
- Identify roof insulation (flat roof with no cavity and with rigid insulation)
- Work at heights
- Determine roof pitch
- Measure areas

Knowledge of:

- General construction
- Insulation materials and methods
- OSHA safety requirements
- Roofing construction methods
- Roofing materials

DOMAIN 3: Testing the Building for an Energy Audit

Task 1: Preparing for the test(s)

Ability to:

- Determine the test(s) to be performed
- Inform the client of the test(s)
- Gather the test tools/equipment
- Prepare the building for testing based upon manufacturer’s test equipment specifications
- Comprehend manufacturer’s specifications
- Use test equipment

Knowledge of:

- Building diagnostic testing
- Building science
- Test equipment
- Test protocols

Skill in:

- Attention to detail
Task 2: Evaluate the appliances

Ability to:
- Inspect appliances for test accessibility
- Plug appliances into the watt hour meter
- Follow the manufacturer’s guidelines for operation of the watt hour meter
- Document findings with pictures/forms
- Read and interpret a watt hour meter
- Verify usage based on Association of Home Appliance Manufacturer’s (AHAM) charts.

Knowledge of:
- Electric appliance metering
- Electric appliance safety

Task 3: Conduct indoor air quality tests

Ability to:
- Monitor the ambient CO tests throughout the building
- Record the highest ambient CO reading
- Source the CO
- Determine if the reading exceeds any applicable action levels
- Identify conditions that promote mold growth (high humidity, cold surface condensation, etc.)
- Follow odors to find source of mildew
- Visually identify presence of mold-like substance
- Identify conditions that promote radon infiltration
- Measure the flow of mechanical ventilation
- Document findings with pictures/forms
- Communicate meter results with clients
- Remain calm under stressful situations

Knowledge of:
- ASHRAE maximum allowable CO exposure for living areas
- Carbon monoxide exposure symptoms
- Conditions that promote mold growth
- Conditions that promote radon infiltration
- EPA action levels
- How to measure mechanical ventilation
- NIOSH recommended limit for occupational CO exposure
- OSHA permissible exposure limits

Skill in:
- Remaining dedicated to the cause
- Detecting unusual odors

Task 4: Perform Combustion safety and efficiency tests

Ability to:
- Visually inspect the fuel supply lines
- Test for leakage in the fuel supply pipes
- Verify leaks with bubble solution
- Perform combustion spillage tests
- Perform draft tests (including worst case depressurization, scenario, etc.)
• Measure drafts
• Conduct combustion efficiency tests (CO2, Oxygen, stack temperature, etc.)
• Measure CO in combustion appliances (undiluted)
• Document findings with pictures/forms
• Identify various heating systems
• Work in confined spaces

Knowledge of:
• Back-draft test protocols.
• Building science
• Codes and standards adopted by local jurisdiction
• Combustion efficiency tests
• Fuel line leak testing techniques
• Heating system configurations
• How to conduct draft tests
• How to inspect fuel supply lines
• How to measure CO in appliances
• Nationally recognized combustion safety test protocols (BPI, Energy Outwest, Midwest Best Practices, etc.)
• Various venting methods
• Understanding of what is "worst case"

Task 5: Perform blower door tests

Ability to:
• Perform pre-blower door interior thermographic scan
• Perform pre-blower door exterior thermographic scan
• Follow manufacturer’s specifications for conducting blower door tests
• Perform thermographic scan during the blower door operation
• Perform zone pressure diagnostics (ZPDs)
• Locate points of infiltration/exfiltration
• Document findings with pictures/forms
• Calculate the building tightness limits
• Interpret blower door results
• Locate points of infiltration/exfiltration

Knowledge of:
• Knowledge of advanced blower door diagnostics
• Knowledge of blower door testing procedures (pressurization, depressurization, etc.)
• Knowledge of how to assemble and operate a blower door
• Knowledge of how to evaluate zone pressures
• Knowledge of thermography
• Understanding of air sealing limits national standards (BTL, DTL, ACH, BAS, MVG, etc.)

Skills in:
• Basic math

Task 6: Perform HVAC distribution tests

Ability to:
• Perform forced air system distribution leakage test
• Verify with building occupants if there is adequate heat in the building
• Measure room temperatures
• Measure the temperatures of the hydronic radiators
• Perform air flow tests at the registers
• Measure temperature rise across heat exchangers
• Measure pressure drop across the coil
• Inspect hydronic distribution (high, low, valves, etc.)
• Measure hydronic distribution (radiators, fin tube, etc.)
• Perform pressure balancing rooms tests (ducted air systems)
• Document findings with pictures/forms
• Multi-task
• Work in confined spaces

Knowledge of:
• HVAC testing protocols
• Air flow
• How to measure hydronic distribution
• HVAC terminology
• Hydronic heating
• Manufacturer’s specifications for forced air distribution systems
• Distribution system design

Skill in:
• Communication
• Attention to detail

DOMAIN 4: Evaluating Collected Energy Audit Data

Task 1: Evaluate the health and safety of the building

Ability to:
• Review collected data to determine if there is health and safety concern
• Determine if health and safety issues can be addressed through an energy efficiency measure and therefore can fall within energy funding
• Determine the repairs
• Review the economics of the repairs to determine whether to repair or to defer

Knowledge of:
• How to deal with special circumstances (mold, lead, asbestos, etc.)
• Construction repair methods
• Costs associated with repairs
• Energy funding

Skill in:
• Basic math
• Cost estimating

Task 2: Evaluate the durability/structural integrity of the building

Ability to:
• Review collected data to determine if there is a durability/structural integrity issue
• Determine if the durability/structural integrity issues can be addressed through an energy efficiency measure and therefore can fall within energy funding
• Determine the durability/structural integrity repairs
Review the economics of the repairs to determine whether to repair or to defer

Knowledge of:
- Codes and standards adopted by local jurisdiction
- Costs associated with structural repairs
- Energy funding
- Structural repair methods

Skill in:
- Basic math
- Cost estimating

Task 3: Evaluate the HVAC system

Ability to:
- Review collected data to determine if there is a HVAC system issue
- Evaluate the HVAC system for health and safety concerns
- Evaluate HVAC sizing for potential replacement or upgrades (post shell retrofit)
- Evaluate the distribution (add trunk lines, radiators, etc. to rooms as needed)
- Evaluate fuel switching options
- Evaluate the need to clean and tune versus replace
- Evaluate the need for and supply of combustion air
- Evaluate the HVAC for other issues that lead to replacement or upgrades (condition, age, efficiency, etc.)
- Identify duct sealing/insulation and pipe insulation opportunities
- Interpret software output
- Perform load calculations
- Use ACCA software

Knowledge of:
- ACCA manuals
- BTU content of fuels
- Energy funding
- Heating/cooling system operations
- How to size HVAC systems
- HVAC load calculations
- HVAC system repair, replacement or upgrade costs
- Maximum allowable duct leakage
- Safety requirements

Skill in:
- Basic math
- Communication
- Attention to detail

Task 4: Evaluate the mechanical ventilation

Ability to:
- Review collected data to determine mechanical ventilation issues
- Compare flow with ventilation specifications
- Compare blower door results against IAQ standards
- Assess the need for and placement of additional mechanical ventilation
- Assess the make-up air source and whether it needs to be filtered
- Determine the mechanical ventilation repairs, replacement and/or addition
• Review the economics of the repairs, replacements and/or additions to determine whether to proceed or to defer
• Determine the type of controls needed

Knowledge of:
• Energy funding
• IAQ standards
• Mechanical ventilation controls
• Types of ventilation
• Ventilation flow
• Ventilation sizing

Skill in:
• Basic math

Task 5: Evaluate energy use base loads

Ability to:
• Review collected data to determine if replacements or upgrades will reduce energy consumption
• Review energy efficient light bulbs for installation
• Review refrigerator/freezer data for economics of replacement
• Review domestic water heaters for economics of replacement or repair
• Review domestic water heater pipe insulation opportunities
• Review domestic water heater insulation opportunities
• Review water saving opportunities (water saving shower heads, etc.)
• Review domestic water heater thermostat setting

Knowledge of:
• Codes and standards adopted by local jurisdiction
• Components of base loads
• Energy funding
• How to calculate base loads
• Pipe insulation

Task 6: Evaluate the foundation

Ability to:
• Review collected data to determine foundation issues
• Determine repairs needed
• Review economics of repairs
• Determine proper insulation location (floor or wall)
• Evaluate crawlspace venting needs
• Evaluate box sills insulation needs
• Determine if perimeters need to be insulated
• Identify type of insulation materials to be added
• Calculate if adequate ventilation exists or should be added
• Evaluate the need for vapor barrier

Knowledge of:
• Building science
• Codes and standards adopted by local jurisdiction
• Energy funding
• Foundation construction techniques
- Foundation crawlspace ventilation
- Foundation insulation
- Foundation types
- Foundation vapor barriers

Task 7: Evaluate the walls

Ability to:
- Review collected data to determine wall issues
- Evaluate repairs needed and structural integrity
- Review the economics of repairs to determine whether to repair or defer
- Determine proper insulation levels
- Identify type of insulation materials to be added
- Determine square footage of area to be insulated
- Ensure pressure plane and thermal boundary align
- Ensure the vapor retarder is appropriately placed

Knowledge of:
- EPA and DOE lead and asbestos standards
- Building science
- Codes and standards adopted by local jurisdiction
- Energy funding
- Insulation types and appropriateness
- Pressure planes and thermal boundaries
- Typical wall structures
- Vapor barriers in walls

Task 8: Evaluate the attic

Ability to:
- Review collected data to determine attic issues
- Evaluate repairs needed and structural integrity
- Review economic of repairs to determine whether to repair or defer
- Review insulation location
- Review insulation type
- Evaluate whether insulation is appropriate for use
- Ensure pressure plane and thermal boundary align (air sealing)
- Ensure the vapor retarder is appropriately placed
- Evaluate attic ventilation existing and required
- Assess fire hazards (lighting cans, electrical, etc.)
- Evaluate the need for service access

Knowledge of:
- Attic construction and materials
- Attic fire hazards
- Attic types
- Attic ventilation
- Building science
- Codes and standards adopted by local jurisdiction
- Energy funding
- Insulation types and appropriateness
- Pressure planes and thermal boundaries
- Vapor barriers

Task 9: Evaluate the doors

Ability to:
- Review collected data to determine door issues
- Evaluate repairs needed and structural integrity (can frame support door replacement, etc.)
- Review economic of repairs to determine whether to repair or replace
- Evaluate the condition of storm doors (closers, etc.)

Knowledge of:
- Codes and standards adopted by local jurisdiction
- Door framing structures and processes
- Door types
- Energy funding
- Glass types

Task 10: Evaluate the windows

Ability to:
- Review collected data to determine window issues
- Evaluate repairs needed and structural integrity
- Review economic of repairs to determine whether to repair or replace
- Evaluate window components and performance

Knowledge of:
- Building science
- Codes and standards adopted by local jurisdiction
- Energy funding
- Window components
- Window glazing
- Window types

Task 11: Enter data into energy modeling software

Ability to:
- Gather all information and data pertaining to the audit
- Enter the data into energy modeling software
- Analyze the output from the software
- Produce a cost and savings report
- Use a computer

Knowledge of:
- Basic construction terms
- Building science
- Various types of energy modeling software

Task 12: Determine the work scope

Ability to:
- Determine the health and safety measures
- Determine the building durability measures
- Determine the energy measures based on the SIR
- Provide analysis reports (work order)
- Create reports
- Create work specifications

Knowledge of:
- Building science
- Codes and standards adopted by local jurisdiction
- Construction practices and terms
- Energy modeling software
- Program rules and standards

Skill in:
- Computer usage
<table>
<thead>
<tr>
<th>A</th>
<th>Demonstrating Professional Energy Auditor Conduct</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Establish client relations for an energy audit</td>
<td>2%</td>
</tr>
<tr>
<td>2</td>
<td>Represent the program/agency/organization</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td>Maintain professionalism</td>
<td>1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>Collecting Information About The Building For An Energy Audit</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Document energy consumption</td>
<td>2%</td>
</tr>
<tr>
<td>2</td>
<td>Document the building history</td>
<td>1%</td>
</tr>
<tr>
<td>3</td>
<td>Conduct a physical/visual inspection</td>
<td>2%</td>
</tr>
<tr>
<td>4</td>
<td>Collect appliance information</td>
<td>2%</td>
</tr>
<tr>
<td>5</td>
<td>Collect electrical base load data</td>
<td>2%</td>
</tr>
<tr>
<td>6</td>
<td>Collect building measurements</td>
<td>3%</td>
</tr>
<tr>
<td>7</td>
<td>Collect health and safety data</td>
<td>2%</td>
</tr>
<tr>
<td>8</td>
<td>Collect mechanical ventilation data</td>
<td>2%</td>
</tr>
<tr>
<td>9</td>
<td>Identify building insulation (attic, walls and foundations)</td>
<td>2%</td>
</tr>
<tr>
<td>10</td>
<td>Collect attic data</td>
<td>2%</td>
</tr>
<tr>
<td>11</td>
<td>Collect wall data</td>
<td>2%</td>
</tr>
<tr>
<td>12</td>
<td>Collect window data</td>
<td>2%</td>
</tr>
<tr>
<td>13</td>
<td>Collect door data</td>
<td>2%</td>
</tr>
<tr>
<td>14</td>
<td>Collect foundation data</td>
<td>2%</td>
</tr>
<tr>
<td>15</td>
<td>Collect roof data</td>
<td>2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>Testing The Building For an Energy Audit</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preparing for the test(s)</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>Evaluate the appliances</td>
<td>4%</td>
</tr>
<tr>
<td>3</td>
<td>Conduct indoor air quality tests</td>
<td>7%</td>
</tr>
<tr>
<td>4</td>
<td>Perform combustion safety and efficiency tests</td>
<td>10%</td>
</tr>
<tr>
<td>5</td>
<td>Perform blower door tests</td>
<td>10%</td>
</tr>
<tr>
<td>6</td>
<td>Perform HVAC distribution tests</td>
<td>4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Evaluating Collected Energy Audit Data</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evaluate the health and safety of the building</td>
<td>3%</td>
</tr>
<tr>
<td>2</td>
<td>Evaluate the durability/structural integrity of the building</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td>Evaluate the HVAC system</td>
<td>3%</td>
</tr>
<tr>
<td>4</td>
<td>Evaluate the mechanical ventilation</td>
<td>2%</td>
</tr>
<tr>
<td>5</td>
<td>Evaluate energy use base loads</td>
<td>2%</td>
</tr>
<tr>
<td>6</td>
<td>Evaluate the foundation</td>
<td>2%</td>
</tr>
<tr>
<td>7</td>
<td>Evaluate the walls</td>
<td>2%</td>
</tr>
<tr>
<td>8</td>
<td>Evaluate the attic</td>
<td>2%</td>
</tr>
<tr>
<td>9</td>
<td>Evaluate the doors</td>
<td>2%</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate the windows</td>
<td>2%</td>
</tr>
<tr>
<td>11</td>
<td>Enter the data into energy modeling software</td>
<td>0%</td>
</tr>
<tr>
<td>12</td>
<td>Determine the work scope</td>
<td>3%</td>
</tr>
</tbody>
</table>

| | | 100% |